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In a quantum ratchet accelerator system, a linearly increasing directed current can be dynamically generated
without using a biased field. Generic quantum ratchet acceleration with full classical chaos �J. B. Gong and P.
Brumer, Phys. Rev. Lett. 97, 240602 �2006�� constitutes a new element of quantum chaos and an interesting
violation of a sum rule of classical ratchet transport. Here we propose a simple quantum ratchet accelerator
model that can also generate linearly increasing quantum current with full classical chaos. This model does not
require a bichromatic lattice potential. It is based on a variant of an on-resonance kicked-rotor system, peri-
odically kicked by two optical lattice potentials of the same lattice constant, but with unequal amplitudes and
a fixed phase shift between them. The dependence of the ratchet current acceleration rate on the system
parameters is studied in detail. The cold-atom version of our quantum ratchet accelerator model should be
realizable by introducing slight modifications to current cold-atom experiments.
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I. INTRODUCTION

A ratchet accelerator �RA� �1� can generate, without using
a biased field, directed transport in both momentum and co-
ordinate space. Specifically, certain spatiotemporal symme-
tries in the Hamiltonian dynamics are broken and as a result
a linearly increasing directed current can be dynamically
generated. Such a property of RA systems is of considerable
interest for understanding �i� general properties of quantum
and classical ratchet effects in Hamiltonian systems �1–9�,
�ii� quantum-classical correspondence in transport phenom-
ena �2,3,5�, and �iii� a number of interesting topics in quan-
tum chaos �10�.

Ongoing cold-atom studies of the well-known quantum
kicked-rotor �QKR� model �10� have motivated several RA
studies using QKR variants. In particular, Ref. �8� showed
that accelerating quantum ratchet current can be realized by
considering a QKR variant, with the kicking period on the
main resonance with the recoil frequency of the cold atoms.
Reference �9� showed that a quantum RA can also be real-
ized with QKR variants on high-order quantum resonances.
In both cases, spatiotemporal symmetries in the dynamics are
broken by using a bichromatic optical lattice �specifically, an
optical superlattice obtained by superimposing two standing
waves with periods � /2 and � /4�. However, although al-
ready achieved in some static cases �11�, experimentally re-
alizing bichromatic and pulsed optical lattices is somewhat
demanding. Indeed, in two recent cold-atom on-resonance-
QKR experiments �12,13�, directed quantum transport is ef-
fectively demonstrated by use of a single-period optical lat-
tice only, with the price being that special symmetry-
breaking initial superposition states should be prepared.

The ratchet transport in the above-mentioned on-
resonance-QKR models �8,9,12–14� occurs only for isolated

values of the effective Planck constant �to be defined below�.
By contrast, using variants of another paradigm of quantum
chaos—namely, the kicked-Harper model �15�—Gong and
Brumer �16� proposed a quantum RA model that works for
an arbitrary value of the effective Planck constant. In this
sense, the ratchet transport in this model �16� is generic.
Furthermore, this generic RA model works even when the
underlying classical dynamics is fully chaotic, a situation
where classical ratchet transport necessarily vanishes accord-
ing to a classical “sum rule” �2,5�. Hence the work in Ref.
�16� represents an interesting and generic quantum violation
of a classical theorem.

The detailed aspects of the above-mentioned quantum
violation of the classical sum rule are yet to be explored.
Along this direction, a cold-atom realization of a generic
quantum RA model would be of great interest. Nevertheless,
such experiments were thought to be challenging because the
model proposed in Ref. �16� also employed a flashing
bichromatic optical lattice and it was unclear how a kicked-
Harper-like model can be realized in a cold-atom laboratory.

Thanks to our recent finding �17,18� that exposed a direct
connection between QKR and a class of kicked-Harper-like
models, here we are able to propose a quantum RA model
that �i� contains all the important ingredients as the model
proposed in Ref. �16�, �ii� does not require a bichromatic
lattice potential, and �iii� is realizable by slightly modifying
existing cold-atom experiments of QKR dynamics. Indeed,
this RA model only requires an on-resonance variant of the
QKR, kicked by two optical lattice potentials of the same
lattice constant, but with unequal kicking amplitudes and a
fixed phase shift between them. In addition to offering a
simpler quantum RA model that is of theoretical interest, it is
hoped that our results below will motivate cold-atom experi-
mental studies in the near future.

This paper is organized as follows. In Sec. II we show
how a wide class of twisted kicked Harper models can be
realized by using an on-resonance “double-kicked” rotor
model. General discussions in Sec. II directly lead to an*phygj@nus.edu.sg
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atom-optics proposal for realizing the RA model proposed in
Ref. �16�. In Sec. III we simplify the cold-atom RA realiza-
tion in Sec. II, resulting in a RA model that does not need a
bichromatic optical lattice potential. We then present and dis-
cuss detailed numerical results of our RA model, with an
emphasis placed on the dependence of the current accelera-
tion rate on the system parameters. In Sec. IV we briefly
discuss one extension of this study. Section V concludes this
work.

II. COLD-ATOM REALIZATIONS OF A WIDE CLASS
OF TWISTED KICKED HARPER MODELS

Our starting point is the so-called double kicked-rotor
model �DKRM� �19–21� that has been experimentally real-
ized. We use scaled and dimensionless variables throughout.
The DKRM Hamiltonian is then given by

HDKRM =
p2

2
+ KVK�q��

n

��t − nT� + LVL�q��
n

��t − nT − �� ,

�1�

where q (��0,2��) and p are conjugate coordinate and mo-
mentum operators, T is the period for both kicking se-
quences, � is the time delay between the two kicking se-
quences, K and L characterize the amplitudes of the kicking
fields, and VK�q� and VL�q� are periodic functions of q with
the period 2�. The associated quantum map UDKRM for a
period from nT+0− to �n+1�T+0− is given by

UDKRM = e−i�T−��p2/2�e−i�L/��VL�q�e−i�p2/2�e−i�K/��VK�q�, �2�

where � represents an effective and dimensionless Planck
constant for the DKRM system �hence p=−i�� /�q�.

Theoretically, we shall first focus on an ideal situation
where cold atoms are injected with exactly zero quasimo-
mentum �22�. With that simplification we may consider only
a Hilbert space satisfying the periodic boundary condition
associated with q→q+2�. The quantum resonance condi-
tion T�=4� then leads to

e−iTp2/2� = 1, �3�

reducing UDKRM to UDKRM
r ,

UDKRM
r = ei�p2/2�e−i�L/��VL�q�e−i�p2/2�e−i�K/��VK�q�

= eip̃2/2�̃e−i�L̃/�̃�VL�q�e−ip̃2/2�̃e−i�K̃/�̃�VK�q�, �4�

where we have defined the rescaled momentum

p̃ � �p �5�

and the rescaled kicking amplitudes

K̃ � �K , �6�

L̃ � �L . �7�

Due to the above momentum rescaling, the effective Planck
constant now becomes

�̃ � �� . �8�

Equations �6�–�8� show that the rescaled dimensionless

system parameters K̃, L̃, and �̃ can be easily tuned by adjust-
ing the time delay between the two kicking sequences. Based
on a previous DKRM experiment �19�, we estimate that in

experiments the kicking amplitudes K̃ and L̃ can vary in the

range of 0.1–100 and the effective Planck constant �̃ can at
least vary in the range of 0.05–20. Our computational studies
in the next section will be based on these two ranges.

To gain insights into the quantum-resonance-reduced
quantum map in Eq. �4�, let us first reinterpret it as follows.
Reading the four factors in Eq. �4� from right to left, one sees
that within each period T, in effect the system is first subject
to one kick, followed by a free evolution of duration unity;
then, the system is kicked a second time, followed by a sec-
ond free evolution of the same duration, but now with the
free Hamiltonian given by

Hfree = − p̃2/2. �9�

Such an effective Hamiltonian with a negative kinetic energy
term was first considered in Ref. �23�. With this interpreta-
tion, one may define an “�-classical” limit of this quantum

map—i.e., the �̃���→0 limit with fixed K̃ and L̃. This
terminology is inspired by the so-called “�-classical” limit in
early studies of QKR models in the presence of gravity �24�.
Let qc and p̃c be the counterparts of q and p̃ in this
�-classical limit, with their values right before t=nT denoted
by qn

c and p̃n
c. Further defining

Pc � qc + p̃c, �10�

one easily finds the classical map associated with the
�-classical limit:

Pn+1
c = Pn

c − K̃
dVK�qn

c�
dqn

c , �11�

qn+1
c = qn

c + L̃
dVL�Pn+1

c �

dPn+1
c . �12�

In terms of the canonical pair qc and Pc, the classical Hamil-
tonian H�

c that generates this �-classical map is then given by

H�
c = L̃VL�Pc� + K̃VK�qc��

n

��t − n� . �13�

Consider now the simplest choice for the kicking
potentials—i.e., VK�q�=VL�q�=cos�q�. Such a choice under

the restriction K̃= L̃ was adopted by the original experiment
�19� and previous theoretical studies of off-resonance
DKRM �20,21�. Substituting VK�q�=VL�q�=cos�q� into Eq.
�13�, the resulting �-classical Hamiltonian becomes precisely
the classical kicked Harper model in terms of Pc and qc �17�.
Returning to the old representation �qc , p̃c�, the obtained
kicked Harper Hamiltonian becomes

HTKH
c = L̃ cos�p̃c + qc� + K̃ cos�qc��

n

��t − n� . �14�

Comparing the Hamiltonian HTKH
c with the standard kicked

Harper Hamiltonian as a function of qc and p̃c, i.e.,
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HKH
c = L̃ cos�p̃c� + K̃ cos�qc��

n

��t − n� , �15�

we can regard HTKH
c as a “twisted” version of the standard

kicked Harper model HKH
c . With this in mind, the quantum

map in Eq. �4� in the case of VK�q�=VL�q�=cos�q� can be
regarded as a quantized version of the twisted kicked Harper
model.

We now apply this on-resonance DKRM strategy to real-
ize a twisted version of the quantum RA model proposed in
Ref. �16�. This RA model involves the classical Hamiltonian

HBKH
c = L̃ cos�p̃c� + K̃�cos�qc + �1�

+ sin�2qc + �2���
n

��t − n� . �16�

If we now consider the scenario

scenario I:

VL�q� = cos�q� , �17�

VK�q� = �cos�q + �1� + sin�2q + �2�� , �18�

then a twisted version of HBKH
c �i.e., in terms of Pc and qc

rather than p̃c and qc� naturally emerges from Eq. �13�.
Clearly then, at least for a twisted version, a cold-atom quan-
tum version of the bichromatic generalized kicked Harper
model HBKH

c is realizable, provided that a kicking bichro-
matic lattice potential such as �cos�q+�1�+sin�2q
+�2���n��t−n� can be realized. In the next section a simpler
realization of quantum RA is obtained.

Before ending this section we make one important re-
mark. In the standard kicked Harper model HKH

c in Eq. �15�,
the momentum variable is an abstract canonical variable.
This becomes obvious if we consider the canonical equations
of motion, yielding that the moving speed in the coordinate
space is not proportional to the momentum. As such, it is
unclear whether the momentum variable in the kicked
Harper model can be directly related to the mechanical mo-
mentum of a moving particle. Dana managed to connect this
abstract momentum variable with the mechanical momentum
of a charged particle kicked by a special sequence of mag-
netic fields �25�. Here, through the cold-atom realization of a
wide class of twisted kicked Harper models, we are linking
the momentum variable in the kicked Harper model with the
mechanical momentum of cold atoms. Only through such
connections can the expectation value of the momentum be
interpreted as a current of moving particles.

III. RATCHET ACCELERATOR WITHOUT
A BICHROMATIC OPTICAL LATTICE

Our discussions in the previous section make it clear that,
in realizing a wide class of kicked-Harper-like models with
on-resonance DKRM, the following canonical transforma-
tion or twist is necessarily involved:

�qc, p̃c� → �qc,Pc� . �19�

Due to this phase-space twist, the resultant systems should
assume different symmetry properties than those analyzed in

terms of qc and p̃c. Hence, the symmetry breaking consider-
ations in Ref. �16� no longer apply to twisted kicked-Harper-
like models. As a result, the use of a bichromatic optical
lattice as in Ref. �16� may not be the simplest approach for
symmetry breaking. It is this recognition that motivated us to
seek a realization of a quantum RA without using a bichro-
matic lattice potential. This attempt is also consistent with a
recent study of ratchet transport �in coordinate space only�
using an off-resonance DKRM involving two optical lattices
of the same lattice constant �26�.

Specifically, here we shall demonstrate that an on-
resonance DKRM with the alternative scenario

scenario II:

VK�q� = cos�q� , �20�

VL�q� = cos�q + �� , �21�

can already give rise to a simple quantum RA model if K
�L. In addition to the on-resonance condition, this scenario
only needs to introduce two small modifications to a previ-
ous DKRM experiment �19�. First, the two kicking se-
quences of optical lattice potentials should have different
amplitudes. Second, there should be a fixed phase shift �
between these two optical lattice potentials.

Using Eq. �4�, scenario II described above gives the quan-
tum map

URA = eip̃2/2�̃e−i�L̃/�̃�cos�q+��e−ip̃2/2�̃e−i�K̃/�̃�cos�q�. �22�

Using Eq. �13�, one then obtains the �-classical Hamiltonian
of this quantum map:

HRA
c = L̃ cos�qc + p̃c + �� + K̃ cos�qc��

n

��t − n� . �23�

Let �n� be the eigenstates of the momentum operator p̃,

with an eigenvalue n�̃ for a Hilbert space with the periodic
boundary condition. In the following we shall focus on the
RA dynamics for the initial state �0�. The classical analog of
this initial state is a classical ensemble with p̃c=0 and a
random uniform distribution of qc. Such an initial state is a
trivial state because it is symmetric upon time-reversal op-
erations or space-reflection operations. With this choice of
initial state, any induced current afterwards must be due to
some broken spatiotemporal symmetries in the ensuing dy-
namics. It is also worth noting that the system described by
Eq. �22� is invariant under the transformations q→2�−q,
p̃→−p̃, and �→−�. As a result, the current should undergo
a sign change under �→−�, leading to the expectation that
the generation of a ratchet current is forbidden for �=0 or
�=�. For this reason we focus on other values of �.

A. Examples of accelerating ratchet current

Consider first a few computational examples depicted in
Fig. 1. There, the time dependence of the quantum ratchet
current—i.e., the expectation value of the scaled momentum,

	p̃�—is shown for some particular values of K̃, L̃, and �.
Unless stated otherwise, the initial state is �0� and the time
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propagation due to the quantum map URA is carried out by
standard fast-Fourier-transformation techniques. The cases
shown in Fig. 1 display spectacular linear acceleration of the
ratchet current at a significant rate. In order to have a com-
parison with the underlying �-classical limit, we have also
calculated the ensemble-averaged classical momentum 	p̃c�.
The classical calculations are based on the �-classical map
given by Eq. �23�, using an ensemble of 106 particles initially
distributed along p̃c=0 randomly and uniformly. As is seen
from Fig. 1�a�, the �-classical currents can also increase lin-
early, with a slope smaller than their quantum counterparts.
The result in Fig. 1�b� is even more interesting. There the
classical current remains indistinguishable from zero at all
times, but the quantum acceleration is substantial. Note also
that these �-classical results have nothing to do with the true
classical limit of a DKRM, because here the DKRM is al-
ways on the main quantum resonance. Indeed, the �-classical
Hamiltonian is given by Eq. �23�, whereas the true classical
Hamiltonian of the DKRM should take exactly the same
form as Eq. �1�.

To reveal the interesting dependence of the quantum
ratchet acceleration upon the initial state, we also show in
Fig. 1�b� the parallel results associated with five other sym-
metric initial states—namely, ��n�+ �−n�� /
2, where n=1–5.
It is seen that these states can display very different ratchet
dynamics, consistent with the intuition that if the dynamics is
averaged over all initial states, then the net current is zero.

We have also checked that if we choose �=0,� instead,
then both the classical and quantum accelerations seen in the

examples in Fig. 1�a� do vanish. This confirms our previous
discussion on a symmetry property of our new RA model.

B. Dependence of acceleration rate on K̃ and L̃

To further explore the dynamical aspects of our RA
model, we have carried out detailed studies of how the
ratchet acceleration rate depends on the system parameters.
The computational examples shown in Fig. 1 motivate us to
define the quantum current accelerate rate as follows:

Rq � d	p̃�t��/dt . �24�

For the sake of comparison we also define the �-classical
current acceleration rate as

Rc = d	p̃c�t��/dt . �25�

Computationally, these rates are determined as the average
linear increase rate over the time range 1000� t /T	2000.
Once the linear acceleration rates are obtained, we then
check, in many cases, to see if the dynamics over a much
longer time scale still accelerates the current with the same
rate. Most often this is indeed the case, but some negative
cases due to transient effects will be mentioned below.

Figure 2 shows the contour plots of �Rq� and �Rc� thus

obtained as a function of K̃ and L̃. Because the sign of the
acceleration rates is found to be a rather insensitive function

of K̃ and L̃, for better visual effects we have chosen to plot
their absolute values. A number of interesting features can be

FIG. 1. Time dependence of the ratchet current for both the
quantum ratchet accelerator model of Eq. �22� �solid lines� and its
�-classical limit �dash-dotted lines� described by Eq. �23�. For

panel �a�, system parameters are �̃=1, K̃=3, L̃=1, and �=� /2
�upper two curves� and � /3 �bottom two curves�. For panel �b�,
system parameters are �̃=1, K̃=4, L̃=2, and �=� /2. The classical
current in panel �b� remains indistinguishable from zero at all times
because the system is in the full chaos regime �see Fig. 3�d��. To
reveal the interesting dependence of the ratchet acceleration upon
the initial state, five dotted lines in panel �b�, each labeled by an
integer n, show the results for five other initial states—namely,
��n�+ �−n�� /
2, where n=1–5.

FIG. 2. �Color online� �a� Absolute values of the classical cur-

rent acceleration rate, denoted �Rc�, as a function of K̃ and L̃, for the
RA model in the �-classical limit, Eq. �23�. �b�–�d� Absolute values
of the quantum current acceleration rate, denoted �Rq�, as a function

of K̃ and L̃, for the RA model in Eq. �22�, with �b� �̃=1, �c� �̃

=2� /3, and �d� �̃=�. In all cases we set �=� /2. The contour scale
10−1.5 is for values less than 10−1.5, the contour scale 10−1.0 is for
values between 10−1.5 and 10−1.0, and so on. The contour scales
used in panel �a� apply to other panels as well.
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observed from Fig. 2. First, significant classical ratchet ac-
celeration �see Fig. 2�a�� exists only for those parameter re-
gimes close to the K̃ axis or the L̃ axis. That is, at least one
of the two values of K̃ and L̃ should be small for a consid-
erable classical ratchet acceleration to emerge. But even that
condition does not suffice. It is also clear from Fig. 2�a� that
the regime of K̃� L̃ should be excluded in order to have an
appreciable �Rc�. The overall result is that in the parameter

space defined by K̃ and L̃, only a very small portion can yield
considerable ratchet acceleration in the �-classical limit.
Second, the quantum results shown in Figs. 2�b�–2�d� dis-
play many interest patterns. These patterns are absent in the
classical case shown in Fig. 2�a�, and they vary strongly if

we change �̃ /� from an irrational value to a rational value. It
can also be seen from Figs. 2�b�–2�d� that appreciable quan-
tum ratchet acceleration occurs in a much larger parameter
regime, often with �Rq�
 �Rc�. Third, the quantum results
share one feature with the classical result. That is, along the

direction of K̃= L̃, �Rq� is also seen to be small �typically
much smaller than 10−1.5�. Finally, we mention an interesting
observation regarding the sign of Rq. We observed that if we

swap the values of K̃ and L̃, then the sign of Rq will be
reversed.

Some exceptions seem to be captured by Fig. 2�b�, where

�Rq� can become larger than 10−1.5 along the direction K̃= L̃.
However, upon a careful investigation, we find that these
exceptions are mainly caused by the particular way we nu-
merically determine Rq. Indeed, if we follow the dynamics
much longer �e.g., 104–106 kicks�, then the ratchet current
tends to saturate for these exceptional cases, in contrast to
the unbounded linear acceleration observed in other cases

with K̃� L̃. Detailed investigations of such transient effects
in the ratchet acceleration are beyond the scope this work.
The exact boundary between bounded and unbounded quan-
tum current acceleration can be an interesting and challeng-
ing mathematical problem.

To shed more light on the results in Fig. 2, let us examine
in Fig. 3 the phase space structures of the �-classical limit of
our RA model. The phase space structure of the entire phase
space is just an infinite repetition �in both q̃c and p̃c� of what

is shown in Fig. 3. If K̃� L̃ and either K̃ or L̃ is sufficiently
small, then we always find phase-space invariant curves ex-
tended in momentum. Trajectories moving along these in-
variant curves will display ballisticlike dynamics. Such a
phase-space feature differs from that of the standard kicked
Harper model. In the latter case the phase-space invariant

curves can lie parallel to the qc axis if K̃� L̃. This difference
is expected, because the �-classical Hamiltonian in Eq. �23�
is a twisted version of the kicked Harper model.

Taking into account that qc= �� are equivalent points in
phase space, one can easily see that in both cases of Figs.
3�a� and 3�b�, there exist two bundles of phase-space invari-
ant curves, separated by a seperatrix structure associated
with some unstable fixed points. Remarkably, the moving
directions of the trajectories on the two bundles are opposite
to each other. This feature is also consistent with the classical
sum rule �2�. Based on these observations we are ready to

explain the origin of the classical accelerating ratchet cur-
rent. In particular, because the overlap of the p̃c=0 line �the
initial classical ensemble� with the two bundles of ballistic
curves can be different, the effects of the two bundles of
invariant curves cannot cancel out against each other and
hence a net current develops. The current will increase lin-
early with time due to the ballistic nature of the phase-space
invariant curves extended in momentum. This understanding
is found to be consistent with an estimate using the intersec-
tion lengths between the p̃c=0 line and the two bundles of
phase-space invariant curves. This also clarifies the role of
the parameter �. As is evident from the expression of the
�-classical Hamiltonian in Eq. �23�, the net effect of the
parameter � is a shift of the phase-space structure along the
p̃c axis. So the parameter � can be used to tune the unbal-
anced overlap of the initial ensemble with the two bundles of
phase-space invariant curves.

By contrast, if K̃= L̃ �Fig. 3�c��, then before full chaos sets
in, a web of separatrices emerge in the phase-space and there
are no longer phase-space invariant curves extended in mo-

mentum. As the value of K̃= L̃ increases, the chaotic layer
associated with the web of separatrices becomes thicker and
thicker. During this regular-to-chaos transition no phase-
space invariant curves extended in momentum will emerge.

As a result, as long as K̃= L̃, ballisticlike dynamics cannot
happen and a linear acceleration of the ratchet current be-

comes impossible. This directly explains why the case of K̃

= L̃ is so special for the �-classical ratchet acceleration. Fig-

FIG. 3. The phase-space portrait of the �-classical limit de-

scribed by Eq. �23�, for 2L̃= K̃=1 in panel �a�, 2K̃= L̃=1 in panel

�b�, K̃= L̃=1 in panel �c�, and 2L̃= K̃=4 in panel �d�. For all the
panels we choose �=� /2. In cases �a� and �b� phase-space invari-
ant curves extended in momentum space can be clearly seen. In
case �c� there is a web of separatrix structures and phase-space
invariant curves along momentum space no longer exist. Case �d�
represents a fully chaotic phase space if both K̃ and L̃ are suffi-
ciently large.
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ure 2 also shows the absence of significant quantum ratchet

acceleration in cases of K̃= L̃. We believe that this quantum
result is also due to the special classical phase-space struc-

ture for K̃= L̃.
Let us finally discuss the fully chaotic cases. One typical

example is shown in Fig. 3�d�. Analogous behavior can be

found for other larger values of K̃ and L̃. Clearly, phase-
space invariant curves are all broken in these fully chaotic
cases. As a result, classical ratchet acceleration necessarily
vanishes, as illustrated in Fig. 1�b�. This rationalizes the
main message from Fig. 2�a�; i.e., appreciable classical
ratchet acceleration exists only for a small fraction of the

parameter space of K̃ and L̃.
Remarkably, in general, full classical chaos does not for-

bid quantum ratchet acceleration. As shown in Fig. 2�b� for a

generic value of �̃ �i.e., irrational with ��, large �Rq� can be

found for relatively large K̃ and L̃, even when the associated
�-classical dynamics becomes fully chaotic. A specific com-
putational example is shown in Fig. 1�b�. This hence con-
firms a similar observation made in Ref. �16� and constitutes
another example of generic quantum violation of the classi-
cal sum rule �2�. In Ref. �16�, this violation was explained in
terms of the concentration of quantum amplitudes on the
remanents of classical cantori-like phase-space structures ex-

tended in momentum. Here, as K̃ and L̃ increase, the two
bundles of phase-space invariant curves will also generate
classical cantori-like structures. It can then expected that the
classical cantori-like structures should be extended in mo-

mentum space for K̃	 L̃ as well as L̃	 K̃. As such, the con-
dition for quantum ratchet acceleration to occur in our model
should differ from that in Ref. �16�. Specifically, it is unnec-

essary to have a sufficiently large ratio K̃ / L̃: a sufficiently

small ratio K̃ / L̃ should also do. Given this understanding, the
quantum ratchet acceleration here with full classical chaos is

expected to display a “dual” symmetry in K̃-L̃ space. This is
indeed the case: the pattern in Fig. 2�b� is symmetric along

the line of K̃= L̃. Note also that for nongeneric values of

�̃ /�, the quantum ratchet acceleration rates as shown in Figs.
2�c� and 2�d� can be even larger, despite the fully chaotic
phase space in the underlying �-classical limit.

C. Dependence of acceleration rate on �̃ and �

Focusing on the quantum case, here we first examine the

dependence of Rq on �̃. As already indicated by the drastic
differences between Figs. 2�b�–2�d�, one might wonder if Rq

is too sensitive to �̃ such that experimental uncertainties in �̃
may kill the ratchet acceleration altogether. To address this
concern we show two typical computational results in Fig.
4�a� for two values of �. In both cases some sharp peaks of

Rq can be seen. These peaks are located at those values of �̃

that are rational multiples of �. Nevertheless, the overall �̃
dependence of Rq does not show drastic oscillations. They
can be varying smoothly over a considerably wide range of

�̃. This feature also resembles what is found in Ref. �16�. In

the regime of very small �̃, we have checked that Rq does
approach the �-classical acceleration rate Rc, thus establish-
ing the expected quantum-classical correspondence. It should

be stressed that the �̃ dependence of Rq shown here is a

purely quantum effect. To have a theory accounting for this �̃
dependence would be challenging but truly fascinating.

A related question is whether or not the ratchet accelera-
tion is robust to variations in the parameter � that character-
izes the phase lag between two optical lattices of the same
lattice constant. As demonstrated by the example shown in
Fig. 4�b�, the � dependence of Rq is smooth in the entire
range of �. This is somewhat expected: in the �-classical
limit the parameter � only shifts the phase-space structure
along the momentum axis. The conclusion is that small fluc-

tuations in � or �̃ should not be a big concern for experi-
mental studies.

D. Effects of the quasimomentum spread
in cold-atom experiments

In cold-atom experiments of kicked-rotor systems, the ini-
tial state cannot be exactly the state with zero quasimomen-
tum, even when the atoms are injected by a large-size Bose-
Einstein condensate. Indeed, cold atoms are moving in real
space, so their matter-wave state does not need to satisfy the
periodic boundary condition inherent to a true kicked-rotor
system. To motivate cold-atom experimental studies of our
new RA model, it becomes necessary to examine the detri-
mental effects of the nonzero quasimomentum spread in the
initial state.

Because the kicking optical lattice potentials are always
periodic, the quasimomentum of the cold atoms, denoted ,
is a conserved quantity �13,22�. The dynamics emanated
from an initial state with a spread in  can then be easily
simulated by considering each  component separately. To
shed more light on this issue let us return to the DKRM
propagator UDKRM in Eq. �2�. For each  component, one
now has p̃�n�= �n+��n�. This leads to the consequence that
e−iTp2/2��1 under the quantum resonance condition T�=4�.
Nevertheless, for T�=4� and for the potentials VK�q� and

FIG. 4. �a� Dependence of the ratchet acceleration rate on the

effective Planck constant �̃ for �=� /2 �dotted line� and �=1 �solid
line�. �b� Dependence of the ratchet acceleration rate on the system

parameter �, with �̃=� /2 �dash-dotted line� and �̃=1 �solid line�.
In all cases here 3L̃= K̃=3�̃.
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VL�q� used in our RA model, it is enlightening to rewrite Eq.
�2� as

URA
 = e−i2�p̃2/�̃2

eip̃2/2�̃e−i�L̃/�̃�cos�q+��e−ip̃2/2�̃e−i�K̃/�̃�cos�q�.

�26�

Except for the first factor, this expression is completely par-
allel to URA in Eq. �22�. Because the first factor is no longer
unity and changes with , the first factor introduces dephas-
ing when a distribution of  values is averaged over. There-
fore, it can be expected that the  spread will tend to saturate
the accelerating ratchet current.

Below we assume a Gaussian distribution of , with the

variance denoted by � and the mean value denoted by ̄.
Results for a typical case are shown in Fig. 5. It is seen from
Fig. 5�a� that a nonzero variance � indeed induces the satu-
ration of the quantum ratchet current. The exact saturation
time increases, but slowly, with decreasing �. For the pa-
rameters adopted in Fig. 5�a�, the typical saturation time is

around 20 kicking periods for ��0.002 �scaled by �̃�, a
characteristic value of the  spread reported in a recent ex-
periment using Bose-Einstein condensates �27�. Figure 5�b�
also shows an interesting dependence of the ratchet current at

t=7T upon the mean quasimomentum ̄ of the initial state.
The result for �=0.01 is seen to be almost the same as that

for �=0.002. This ̄ dependence of the ratchet current at
early times might be of interest to experimental studies as
well.

In future experiments the quasimomentum spread can be
made smaller than ��0.002 �27�. However, the result in
Fig. 5�a� indicates that even for ��0.0005, the saturation
still sets in within a relatively short time scale. Interestingly,
a previous theoretical RA model using a bichromatic optical
lattice displays saturation at a similar time scale �9�. This
indicates that when faced with the detrimental effects of the
quasimomentum spread, the robustness of our RA model
without a bichromatic optical lattice is similar to previous
models with bichromatic optical lattices.

IV. DOUBLE-KICKED ROTOR SYSTEMS ON
HIGH-ORDER QUANTUM RESONANCES

So far, we have studied the ratchet transport in the DKRM
under the main quantum resonance condition T�=4�. To
motivate both theoretical and experimental studies in the fu-
ture, in this short section we briefly discuss an interesting
extension of the current study. The extension is about the
dynamics of ratchet current acceleration in the DKRM on
high-order quantum resonances. In such extended cases, T�
=4�� /�, where � and � are two incommensurate integers.
Under this high-order quantum resonance condition we find
that analogous ratchet acceleration can be obtained as well,
without using a bichromatic optical lattice. Thus, ratchet cur-
rent acceleration itself may provide a useful tool for studies
of high-order quantum resonances in DKRM.

As an example in Fig. 6 we show �Rq� under the quantum

antiresonance condition T�=2� as a function of K̃ and L̃.
The kicking potentials VK�q� and VL�q� are the same as those
considered in Figs. 1–5. The case in Fig. 6�a� represents

cases with a generic value of �̃, yielding appreciable �Rq� in
some regimes. In this case the detailed dependence of �Rq� on

K̃ and L̃ is seen to be rather complicated. The case of �
=2� /3 in Fig. 6�b� represents cases with nongeneric values

of �̃. The associated ratchet acceleration effect is seen to be

larger over a wider regime. The dependence of �Rq� on K̃ and

L̃ is also simpler than that seen in Fig. 6�a�. These results
have no apparent connections with classical ratchet transport,
in the sense that for high-order quantum resonances we can
no longer define an �-classical limit to guide our qualitative
understandings. However, as is evident from Fig. 6, even in
these quantum antiresonance DKRM cases, a significant

ratchet acceleration rate also requires the condition K̃� L̃.
More studies of this extension will be carried out in the near
future.

FIG. 5. Effects of the quasimomentum spread on quantum

ratchet currents with �̃=1, 2L̃= K̃=2, and �=� /2. �	p̃�t��
�	p̃�t��− 	p̃�0��. In panel �a�, ̄=0 and the variance in  is given by
�=0, 0.0005, 0.001, 0.002, and 0.004 �from above to bottom�. In
panel �b�, �	p̃�t�� at t=7 with �=0.002 �dashed line� and 0.01

�solid line� is shown as a function of the mean quasimomentum ̄
of the initial state.

FIG. 6. �Color online� Absolute values of the ratchet current
acceleration rate, �Rq���d	p̃� /dt�, for a double-kicked-rotor system
at quantum antiresonance T�=2�. The quantum propagator is
given by Eq. �2�. For the sake of comparison, the same parameter
rescaling as in the cases of the DKRM under the main quantum

resonance is adopted. The rescaled parameters are given by �̃=1 in

panel �a� and �̃=2� /3 in panel �b�. In both cases �=� /2. The
meaning of the contour scale is the same as in Fig. 2, and the
contour scales used in panel �a� apply to panel �b� as well.
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V. CONCLUDING REMARKS

To conclude, we have proposed and studied a quantum
ratchet accelerator model based on atom optics realizations
of kicked-rotor systems. Unlike all previous ratchet accelera-
tor models, here we do not need to use a bichromatic optical
lattice potential. Based on this advantage and the detailed
computational studies presented here, we believe that the
cold-atom realization of our ratchet accelerator model is
within the reach of today’s state-of-the-art experiments
�12,13�. Indeed, the avenue of using atom optics to experi-
mentally study a whole class of kicked-Harper-like models
has been just opened up �17�, and the ratchet accelerator
model proposed here seems to be a wonderful starting point
along this direction.

To have a linear acceleration of ratchet current in the
�-classical limit of our model, we have shown that the
phase-space invariant curves extended in momentum space
are a necessary condition. Therefore, for kicking optical lat-
tice potentials K cos�q� and L cos�q+��, an on-resonance
double-kicked rotor with equal kicking amplitudes K and L
cannot yield an unbounded and linearly increasing classical
current. Instead, we need unequal kicking amplitudes for ac-
celerating and unbounded classical current to occur. This in-

teresting requirement is also observed, but not fully ex-
plained, in the quantum dynamics. Given unequal kicking
amplitudes, the quantum ratchet acceleration in our model
can, however, persist for large kicking amplitudes, even
when the �-classical limit no longer has phase-space invari-
ant curves extended in momentum space. This purely quan-
tum effect is believed to be another example that remanents
of classical phase-space structures can dramatically impact
the quantum dynamics. Considering these insights, we hope
that our simple ratchet accelerator model will also motivate
future theoretical work to better understand quantum trans-
port and quantum-classical correspondence in classically
chaotic systems.
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